Advances in the Relationship between Tau Protein and Morphine De-pendence in Cognitive Dysfunction
Abstract
Keywords
Full Text:
PDFReferences
Zhang H, Wang H, Zhang M, et al. The influence of blood glucose fluctuation on hippocampal Tau protein phosphorylation of diabetic rats. Chinese Journal of Endocrinology and Metabolism 2017; 33(9): 776–780.
Puvenna V, Engeler M, Banjara M, et al. Is phos-phorylated Tau unique to chronic traumatic encephalopathy? Phosphorylated Tau in epileptic brain and chronic traumatic encephalopathy. Brain Research 2016; 1630: 225–40.
Aribisala BS, Hernandez MCV, Royle NA, et al. Brain atrophy associations with white matter lesions in the ageing brain: The lothian birth cohort 1936. European Radiology 2013; 23(4): 1084–92.
Nikseresht S, Etebary S, Roodsari HRS, et al. The role of nitrergic system in antidepressant effects of acute administration of zinc, magnesium and thia-mine on progesterone induced postpartum depres-sion in mice. Tehran University Medical Journal 2010; 68(5): 261–267.
Miloi MM. The DsTau experiment: A study for Tau-neutrino production. Particles 2020; 3(1): 164–168.
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. The American Journal of Geriatric Psychiatry 2018; 26(3): 266–277.
Ameri M, Shabaninejad Z, Movahedpour A, et al. Biosensors for detection of Tau protein as an Alz-heimer’s disease marker. International Journal of Biological Macromolecules 2020; 162: 1100–1108.
Horie K, Barthelemy NR, Mallipeddi N, et al. Re-gional correlation of biochemical measures of am-yloid and tau phosphorylation in the brain. Acta Neuropathologica Communications 2020.
Ma D. P1-099: CIG suppresses tau pathology in a mouse model of tauopathy through regulating the activity of PP2A. The Journal of the Alzheimer’s Association 2019; 15(7S): 272–273.
Cao M, Liu F, Ji F, et al. Effect of c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) in morphine-induced tau protein hy-perphosphorylation. Behavioural Brain Research 2013; 237: 249–255.
Wang X, Zhao Y. The effect of AnshenDingzhi Fang on tau protein phosphorylation and BDNF/TrkB signaling pathway in Alzheimer’s disease rats. Journal of Hainan Medical University 2019; 25(21): 1612–1616.
Frederiksen KS, Nielsen TR, Appollonio I, et al. Biomarker counselling, disclosure of diagnosis and follow-up in patients with mild cognitive impair-ment: A European Alzheimer’ disease consortium survey. International Journal of Geriatric Psychiatry 2021; 36(2): 324–333.
Nicolia V, Ciraci V, Cavallaro RA, et al. GSK3 Fer-flanking DNA methylation and expression in Alzheimer’s disease patients. Current Alzheimer Research 2017; 14(7): 753–759.
Huin V, Deramecourt V, Caparros-Lefebvre D, et al. The MAPT gene is differentially methylated in the progressive supranuclear palsy brain. Movement Disorders 2016; 31(12): 1883–1890.
Armentero MT, Sinforiani E, Ghezzi C, et al. Pe-ripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neu-robiology of Aging 2011; 32(12): 2142–51.
Winston CN, Goetzl EJ, Schwartz JB, et al. Com-plement protein levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer’s disease de-mentia. Alzheimer’s & Dementia: Diagnosis, As-sessment & Disease Monitoring 2019; 11(1): 61–66.
Chen X, Jiang H. Tau as a potential therapeutic target for ischemic stroke. Aging 2019; 11(24): 12827–12843.
Tang SC, Yang KC, Chen CH, et al. Plasma h-Yueh,Chiu Ming-Japroteins in patients with vas-cular cognitive impairment. Neuromolecular Medi-cine 2018; 20(4): 498–503.
Viisanen H, Lilius TO, Sagalajev B, et al. Neuro-physiological response properties of medullary pain-control neurons following chronic treatment with morphine or oxycodone: Modulation by acute ketamine. Journal of Neurophysiology 2020; 124(3): 790–801.
Yang S. Study on the role and mechanism of Tau and MAP-2 in CCK-8 mitigation of mor-phine-induced spatial memory damage (in Chinese) [PhD thesis]. Shijiazhuang: Hebei Medical Univer-sity; 2013.
Ding K. Effect of the change of ghrelin and its re-ceptor on accelerating diabetic encephalopathy by blood glucose fluctuation in GK rats. China Medical Abstracts (Internal Medicine) 2017; (1).
Xiao X, Sun J, Li S, et al. Acrylamide induced apoptosis in VSC4.1 cells through endoplasmic re-ticulum stress. Journal of Environmental & Occu-pational Medicine 2017; 34(12): 1087–1092.
Cao X, Qi X, Wang S. Protective effects of astaxanthin on hippocampal neurons damage in-duced by hydrogen peroxide. Chinese Journal of Marine Drugs 2012; 31(6): 45–49.
Szabo L, Eckert A, Grimm A. Insights into dis-ease-associated tau impact on mitochondria. Inter-national Journal of Molecular Sciences 2020; 21(17): 6344.
Abisambra J, Jinwal U, Blair L, et al. O2lues, Mathew Cockman, Amirthaa Suntharalingham, Pengfei Li, Ying Jin, Christopher Atkins, Chad Dickeymemo-associated degradation. The Journal of the Alzheimer’s Association 2013; 9(4S): 329–330.
DOI: http://dx.doi.org/10.18686/aem.v9i4.178
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.