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Abstract: This study aims to investigate prognostic genes that are correlated with overall survival in gastric cancer. A list of

43 critical genes is first selected from literature review and is narrowed down using marginal analysis, false discovery rate

(FDR). This study used the 16 differential genes selected by FDR to create a cox proportional hazards regression model.

Using a stepwise approach, the cox model is refined. From the 16 genes, 6 genes significantly correlated with overall

survival are chosen and kept in the cox model. A principal component regression model was also constructed based on the

principal component analysis results. The concordance of the principal component regression model is then compared to the

concordance of the cox proportional hazards regression model. The final 6 identified genes are NRP1, STK11, MCM2,

MARCKS, CTS6, C5. Of the 6 genes, MARCKS, NRP1, STK11, MCM2 are in line with previous research. CTS6 and C5,

although studied in other cancers, are comparatively novel in the field of gastric cancer.
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1. Introduction
Gastric cancer (GC) is the fifth most common cancers worldwide, accounting for 35% of all cancer-related deaths (bray

et al, Arnold et al). The American cancer society estimates that there are about 26,380 new cases of GC in United States

during 2022. More than 90% of GC have been reported to be adenocarcinomas which develop from mucosa, the inner most

layer of the stomach (Ilic and Ilic).

As a multifactorial disease, there are well-established non-omics risks factors that contribute to the progression of GC.

One of the best-known risk factors is H. pylori infection, bacteria in the digestive tract that attacks the stomach lining.

Tobacco, obesity, radiation and dietary factors, such as consuming a high in-take of salt-preserved food and low in-take of

vegetables and fruits, are also potential risk factors (Ilic and Ilic). Overall, people are likely to be diagnosed with the cancer

around 60-80 years of age (Julita et al). It uncommon for patients to be diagnosed with GC under the age of 45 (Ferlay et al,

Howlader et al). In addition, the frequency of being diagnosed with GC in men is double the frequency of being diagnosed in

women (Ilic and Ilic).

Over the past decade, research have been carried out to study critical genes and biomarkers to understand the disease’s

progression and survival rates. Historically, genes such as CLDN1, THBS2 and SPOCK 1 are shown to be upregulated in

GC and to be associated with decreased survival (Marimuthu et al, Jung et al, Pan et al, Eftang et al). More recently, genes

such as MARCKS, NRP1, COL10A1 and CD109 have been previously identified to be correlated with overall survival, and

many prognostic gene models have been made accordingly (Sun et al, Quan et al, Wang et al, Huang et al, Dai et al).

However, the identification and confirmation of prognostic genes are still incomplete due to the complexity of the genetic

interactions. Some new biomarkers such as CST6 have been identified to be correlated with the survival in GC but was

previously known to be a critical gene in breast cancers (Li et al). Recently, genes such as P3H2 and C5 genes, previously

not reported, have been identified in Zhou et al study. This emphasizes the importance to continue investigating into genetic

factors that could influence the overall survival.

To investigate the genetic factors behind cancer, researchers use public data bases to conduct bio-informational analysis.

A large and new data set with high quality is essential to reduce errors in research and come to more applicable, accurate and

reliable conclusions. The TCGA database is widely used in the study of cancer as it includes a bigger sample size, data with



Advanced Emergency Medicine- 58 -

higher quality and newer data overall. Using gene and clinical data from TCGA, this study identified four genes that are

significantly correlated with overall survival in GC and established a cox proportional-hazards regression model.

2. Methods

2.1 Data acquisition
This study is based on the public database provided by The Cancer Genome Atlas (TCGA). Over a 12-year period,

TCGA analyzed and collected cancer samples from over 11,000 patients, generating data points including clinical

information, molecular analyte metadata and molecular characterization data such as gene expression values.

Gene expression data and the corresponding clinical data were downloaded from the TCGA STAD database. All cases

containing unreported, unspecified and unknown data points are excluded from this study. This study considered data from

both genders and vital statuses. In addition, this study took into consideration of all reported races in GC including white,

Asian, black/African American and native Hawaiian/pacific islander. Because the sample size of Asian, Black/African

American and Native/Hawaiian islander cancer patients small compared to the sample size of white patients, this study

separated race in two main categories: white and non-white. In total, 348 cases are analyzed. Details regarding the sample

size can be seen in table 1.1 below and the appendix A.

Table 1 TCGA STAD

A list of 43 critical genes regarding GC is selected from conducting a literature review of published paper on gene

expression and overall survival of GC. 39 articles are selected from journals including the National Library of Medicine,

Nature, American Association for Cancer Research, Science Direct, Karger, Wiley Online Library, Springer Link, Frontiers,

Hindawi, PeerJ and MDPI. Across the articles, there are some overlaps, though not strong, between the genes identified. The

list of 43 genes then was narrowed down to identify the genes that most significantly correlate with survival in GC.
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Table 2 List of 43 Genes

2.2 Statistical Testing
All statistical testing was conducted using the R software. The overall survival distribution was shown through plotting

the relationship between the percent surviving and the survival time in days. To create the cox proportional hazards

regression model, I implemented marginal analysis of false discovery rate (FDR) to narrow down the list of 43 genes by

identifying the genes that are truly significant. The FDR uses adjusted p-value to eliminate false positive results and is

defined as FDR=E(Q), where Q=V/R if R> 0. If R= 0, Q=0. This study set FDR adjusted values at the threshold of 0.05 and

looked at the genes whose adjusted p-value is lower or equal to 0.05.

To then investigate into the correlation between non-omics risk factors as well as the significant genes identified, this

study constructed multivariate cox proportional hazard regression model to determine the hazard ratios and the 95%

confidence intervals for the association between overall survival and genetic and non-omics risk factors. For all variables,

P<0.05 is established as the cut off value. The model has the overall function of h(t)=h0(t)×exp(b1x1+b2x2+...+bpx). To

improve the accuracy of the model, this study implemented the stepwise approach to choose which variables to keep using

the step function in R.

To compare the accuracy of the cox proportional hazards regression model based on the genes identified by FDR to the

principal component regression model, this study then conducted principal component analysis on the original list of 43

genes using the princomp function in R. The number of principal components selected for regression was based on the

percent of the original data they contain. Majority of the original data must be present in the number of principal components

selected for the regression to be accurate. A principal component regression model was then created with principal

components selected as the independent variables; the dependent variable of survival time and status remained the same as

the original cox proportional hazards regression model. Lastly, the concordance of the two models is compared to determine

which model more accurately predicts the influence of genetic and non-omics risk factors on overall survival. The overall

procedure is summarized in the flow chart below.
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Figure. 1 Flowchart of Overall Procedure

3. Results

3.1 EDA
The heatmap shown below shows the overall gene expression for the list of 43 genes across 348 cases. The numbers on

the x axis correspond to the 43 genes in the order of table 2.1.2. The Y-axis shows 348 cases in which each gene’s expression

data is collected.

Figure. 2 Heatmap of Gene Expressions
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In the bar graph summarizing the average expression of each gene, there are no gene that is not expressed at all. The

gene expression varies greatly, ranging from 106.8 to 0.5.

Figure. 3 Mean Expression of Genes

The survival distribution across the sample clearly shows that as time progresses the percent of people surviving

decreases quite significantly. By the 3000’s day, the percent of surviving people is less than 40. Overall, the survival

distribution suggests that the mortality rate of GC is relatively high. Based on this assumption, this study then built models to

determine the factors that influence survival.
Figure. 4 Survival Distribution

3.2 Differential Genes
FDR results conducted on the 43 genes indicate that only 16 genes are truly significant according to their adjusted

p-value at the cut off p<0.05. Three non-omics factors, age, gender and race, are also included the FDR analysis to be

considered as covariates alongside with critical genes. In the plot of adjusted p-value versus the 1-43 gene shown below, the

datapoints under the linear line, which indicates the cut off value, are interpreted to be truly significant. The 16 significant

genes identified in the order of their p-value rank are CD109, NRP1, SPOCK1, P4HA3, STK11, MARCKS, UHRF1, CTS6,

CNTN1, MCM2, THBS2, FEN1, P3H2, C5, ACTA2 and SDRP4 (see appendix B).



Advanced Emergency Medicine- 62 -

Figure. 4 P.Value of Genes

3.3 Cox Proportional Hazards Regression Models
In the original cox model that includes all 16 genes identified by FDR as well as non-omics risk factors including

gender, race and age, the result of the model indicates that not all variables are significant. Only gene NRP1, STK11, and

P3H2 are significant as they have p values less than 0.05. NRP1 and P3H2 are shown to be risky candidate genes as there is

a positive correlation between their increasing expression and increasing risk of death. NRP1 has the hazard ratio of 1.059

which indicates that as its gene expression increases, the risk of death or estimated hazard increases 1.059 times or 5.9%.

P3H2 has the hazard ratio of 1.048 which indicates that as its gene expression increases, the estimated hazard increases by

4.8%. On the other hand, STK11 is shown to be a protective candidate gene as there is a correlation between its increasing

expression and decreasing risk of death. STK11 has the hazard ratio of 0.90 which suggests that as its gene expression

increases, the risk of death decreases by 0.10 times or 10%.

The only non-omics risk factor that is shown to be significant age. In fact, age has a p value that is 0.001 which makes it

the most significant variable in this model. In line with previous research and understanding of cancer, the hazard ratio of

age is 1.043 which means that as age increases by one, the risk of estimated hazard increases by 4.3%.
Table 3 Cox Model for 16 Genes
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After implementing the stepwise approach using the step function in R to create a more accurate model by selecting

more significant variables, the 16 genes in the original model were narrowed down to 6 including NRP1, STK11, MCM2,

MARCKS, CST6 and C5. In this updated model, non-omics risk factors are narrowed down to only age. In terms of

significance, age remains to be the most significant with a p value less than 0.001. Genes such as NRP1, STK11, MCM2 and

C5 are the second most significant with p values less than 0.01. MARCKS and CST6 have p values less than 0.05. All 6

genes in this model are significant in predicting the overall survival in GC. Consistent with the original version of the model,

NRP1 is a risky candidate gene. MARCKS, CST6 and C5 are all risky candidate genes. As the level of their gene

expressions increase, the risk of death increases.

The hazard ratio for NRP1 is 1.064 which means that as the gene expression increases, the estimated hazard increases

by 6.4%. MARCKS has a hazard ratio of 1.012; as its expression increases, the risk of death increases by 1.2%. The hazard

ratio of CST6 is 1.004, suggesting that as its gene expression increases, the risk of death increases by 0.4%. Finally, C5 is

shown to have a hazard ratio of 1.148, which means that as its gene expression increases, the risk of death increases by

14.8%. From the hazard ratios of the risky candidate genes, we can see that the increasing gene expression of C5 increases

the risk of death by the highest percentage, 14.8%, when compared to the other genes.

On the other hand, STK11 and MCM2 are protective candidate genes as its increasing gene expression is correlated

with a decrease in estimated hazard. The hazard ratio for STK11 is 0.890 which demonstrates that as its gene expressing

increases, the estimated hazard decreases by 11% or 0.890 times. Finally, the hazard ratio for MCM2 is 0.952 which suggests

that as its gene expression increases, the estimated hazard decreases by 4.8%. From the hazard ratios of the protective

candidate genes, we can see that the increasing gene expression of STK11 decreases the risk of death by the highest

percentage, 11%, when compared to MCM2. The detailed results of this 6-gene prognostic model are shown in the table

below.
Table 4 Cox Model For 6 Genes

3.4 Principal Component Regression
In the principal component analysis conducted on the original list of 43 genes, the screeplot of the principal components

versus variance shows that only the first three principal components need to be taken into consideration (see appendix C).

However, when viewing the summary of the importance of components using the princomp function, the first three principal

components only account for 36.8% of all the gene data which does not cover enough of my data to produce accurate results

in the principal component regression model. Therefore, this study chose to take the first 15 principal components into

consideration when creating the regression model as the first 15 principal components covers the majority, 75%, of my data.
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The results of the regression model demonstrating the correlation between first 15 principal components, age, and

survival show that not all components are significant. Principal component one is the most significant with a P values less

than 0.001. Principal component four is the second most significant with a p values less than 0.01. Principal component two

and five are significant with a p values less than 0.05. After implementing the stepwise approach to select the most

significant variables to include, 15 principal components are narrowed down principal component one, two, four, five, nine

and fourteen. Age as a variable also remains significant. In this model, principal component one and age remain to be the

most significant with p values less than 0.001. The rest of the principal components are significant with p values less than

0.05. The details results are shown in the table below.

Table 5 Principal Regression Cox Model

Overall, the cox proportional hazards regression model has a concordance of 0.0692 and a standard error of 0.024. On

the other hand, the principal component regression model has a concordance of 0.663 and a standard error of 0.027. The cox

proportional hazards regression has a concordance closer to 0.07 and a smaller standard error compared to the principal

component regression model. Therefore, this study will focus on the 6-gene cox proportional hazards regression model to

predict overall survival instead of the principal component regression’s model.

5. Discussion
Overall, the significant correlations between MCM2, MARKS and NRP1 and overall survival in GC identified in this

study is in line with previous research. The overexpression of MARCKS and NRP1 is shown to be correlated with poor

prognosis in GC (sun et al, Zhang et al, Quan et al, Dai et al, Huang et al). MCM2 have been consistently identified as an

important gene across all cancer types (Yuan et al). C5 and CTS6 identified in this study, however, have not been identified

repeatedly and researched on extensively in the field of GC before (Zhou et al, Wang et al).

MARCKS was identified to be a potential prognostic biomarker and a therapeutic target for GC patients. As a protein

that is membrane-associated, MARCKS plays an important part in different cellular functions including cell motility,

cytoskeletal control, motility and inflammatory pathways and can further increase metastasis, leading to high risk of death

(Quan et al). Furthermore, MARCKS exacerbates GC and progression depended on the EMT pathway whose activation

triggers metastasis (Quan et al). NRP1 is involved in tumorigenesis, development, invasion and metastasis of GC cells (Sun

et al). In addition, research demonstrates that the overexpression of NRP1 is significantly correlated malignant phenotype of

GC (Wang et al). According to Zhang et al study, the novel tumor-homing peptide iRGD can improve 5-FU (standard

chemotherapy drug from metastatic GC) effect on GC through NRP1. Thus, NRP1 can be also potential therapeutic target.

The findings of this study are consistent with these studies and research.
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STK11 is a tumor suppressor gene. Thus, its high expression decreases the risk of death and is protective against

metastasis, which is supported by the results of this study (Liang et al). However, it is important to note that STK11 is

complicated by its potential indirect correlation with the risk of GC. The susceptibility to GC is influenced by germline

genetic syndromes including juvenile polyposis syndrome, li-Fraumeni syndrome, Lynch syndrome, familial adenomatous

polyposis and Peutz-Jeghers syndrome (Slavin et al). It is shown that a disrupted STK11 gene causes Peutz-Jeghers

syndrome (Slavin et al). According to the NCCN clinical practice guidelines in oncology, Peutz-Jeghers syndrome increases

the risk of GC up to 29%. Furthermore, STK11 disruption is also shown to be related to other types of cancers such as breast

and pancreatitis cancer (NCCN). Thus, disrupted STK11 gene becomes risk as it is indirectly correlated with increasing risk

of GC..

MCM2, minichromosomal maintenance 2, is a part of the monochromical group of proteins which focuses regulating

DNA replication and cell cycle (Tsaniras et al, Fraggos et al, Li and Xu). Extensive amount of previous research show that

MCM2 is important in cancer cell replication and the development of cancer across different types of cancers (Yuan et al).

Furthermore, MCM2’s gene expression is deeply associated with immune-related molecule expression and immune cell

infiltration in various cancers, suggesting that MCM2 is a potential biomarker for immune therapy (Yuan et al). According to

the findings of this study, MCM2 is identified to be significantly correlated with the overall survival in GC. This is consistent

with previous research that demonstrates MCM2 as important gene across all types of cancer.

Although having been identified as associated with GC before, CTS6 and C5 identified in this study has not been

extensive researched on in the field of GC (Zhou et al, Wang et al). CST6 was previously identified to be a critical gene for

breast cancer. According to emerging research, high gene expression of CST6 is associated with poor prognosis in

Triple-Negative breast cancer and is also correlated with lymph-node metastasis (Li et al). As a subtype of cystatin, CTS6 is

shown to be significantly more up regulated in the TNBC tissues compared to healthy breast tissues (Li et al). This also

appears to be the case for GC. According to the results of this study, as the gene expression of CST6 increases, the risk of

death also increases which suggests that CST6 is a risky candidate gene promoting GC. Future research needs to be

conducted to confirm the correlation between CTS6 and overall survival. In addition, the biological processes behind CTS6

that are associated with GC need to be further investigated.

C5 gene have not been extensively identified in GC before, but however is shown to be associated with the tumor

genesis and cancer progression in other types of malignant tumors (Zhou et al). C5 is shown to play a critical part in the

coding complement system’s components (DeMartino et al). The gene is also shown to be related to pathways such as

immune response, GPCR signaling pathway and lectin-induced complement pathway (Zhou et al). It was suggested that the

cell C5a release from C5 contributes to cancer progression due to its new mechanism of self-activation of C5aR-expressing

cancer cells enhancing invasion and microenvironment favorable for the progression of cancer (Nitta et al). Because there

are not enough reports on the role of C5 in GC, future research is needed to investigate and confirm its relationship with the

overall survival and development of GC.

To evaluate the findings of this study, it is important to acknowledge that although TCGA is a relatively large database

with new and accurate data, it is not representative of all GC cases across the world. For example, TCGA data tends to have

a significant amount of data on white patients but less information on patients of other races. In addition, this study did not

consider many of the non-omics risk factors that previous studies have shown to be associated with over survival such as

dietary factors, radiation, and H. pylori infection because TCGA’s information on other risk factors are limited. Therefore,

the 6-gene prognostic model could have been more accurate if all potential risk factors are included. However, it is very

difficult to have a complete set of data on every single factor that potentially influences a type of cancer. Therefore, despite

the dataset does not include all non-omics risk factors, the results of the model are still important due to the new and big

sample of genetic information provided in the TCGA database. The findings build onto our understanding of critical genes in

GC.

Conclusion
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In summary, the 6-gene cox proportional hazards regression model was created using the data from TCGA, compared to

the principal component regression model and was shown to be more accurate. Four genes (MARCKS, NRP1, STK11,

MCM2) in the 6 gene model supports previous research on their correlation with survival overall survival in GC. Two

comparatively novel gene (C5, CTS6) in the field of GC have also been identified. Further experimental studies should

continue to investigate the relationship between novel genes and their association with GC and investigate the implication

significant gene on potential treatments such as chemotherapy and immune therapy.

Appendix A

Appendix B

Appendix C



Volume 11 | Issue 3 - 67 -

References
[1] Arnold M et al. “Global Burden of 5 Major Types of Gastrointestinal Cancer.” Gastroenterology vol. 159,1 (2020):

335-349.e15.

[2] Bray F et al. “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers

in 185 countries.” CA: a cancer journal for clinicians vol. 68,6 (2018): 394-424.

[3] Busuttil RA, et al. “SFRP4 Drives Invasion in Gastric Cancer and Is an Early Predictor of Recurrence.” Gastric Cancer,

vol. 24, no. 3, 2020, pp. 589–601.

[4] Cai L, et al. “The Better Survival of MSI Subtype Is Associated with the Oxidative Stress Related Pathways in Gastric

Cancer.” Frontiers in Oncology, vol. 10, 2020.

[5] Champeris TS et al. “Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked

world?.” Seminars in cell & developmental biology vol. 30 (2014): 174-80.

[6] Chen DH, et al. “SPOCK1 Promotes the Invasion and Metastasis of Gastric Cancer through Slug-Induced

Epithelial-Mesenchymal Transition.” Journal of Cellular and Molecular Medicine, 2017.

[7] Cheong JH et al.” Development and validation of a prognostic and predictive 32-gene signature for gastric

cancer”. Nature communications, 13, 774. 2022.

[8] Dai J et al. “Whole Genome Messenger RNA Profiling Identifies a Novel Signature to Predict Gastric Cancer

Survival.” Clinical and translational gastroenterology vol. 10,1 (2019): e00004.

[9] DeMartino JA, et al. “The amino terminus of the human C5a receptor is required for high affinity C5a binding and for

receptor activation by C5a but not C5a analogs.” The Journal of biological chemistry vol. 269,20 (1994): 14446-50.

[10] Eftang L, et al. “Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival”. BMC Cancer 13, 586.

2013.

[11] Ferlay J, et al. “Cancer statistics for the year 2020: An overview.” International journal of cancer, 10.1002/ijc.33588. 5

Apr. 2021.

[12] Fragkos M, et al. “DNA replication origin activation in space and time.” Nature reviews. Molecular cell biology vol.

16,6 (2015): 360-74.

[13] Gu Y, et al. “Contactin 1: An Important and Emerging Oncogenic Protein Promoting Cancer Progression and

Metastasis.” Genes, vol. 11, no. 8, 2020, p. 874.

[14] Huang HP, et al. “High expression of COL10A1 is associated with poor prognosis in colorectal cancer.” OncoTargets

and therapy vol. 11 1571-1581. 20 Mar. 2018.

[15] Huang K, et al. “Identification of three predictors of gastric cancer progression and prognosis.” FEBS open bio vol. 10,9

(2020): 1891-1899.

[16] Huang YX, et al. “Identification of Novel Susceptible Genes of Gastric Cancer Based on Integrated Omics

Data.” Frontiers in cell and developmental biology vol. 9 712020. 20 Jul. 2021.

[17] Ilic M, and Irena I. “Epidemiology of stomach cancer.” World journal of gastroenterology vol. 28,12 (2022): 1187-1203.

[18] Jin XF, et al. “P3H4 Overexpression Serves as a Prognostic Factor in Lung Adenocarcinoma.” Computational and

Mathematical Methods in Medicine, vol. 2021, 2021, pp. 1–9.

[19] Jung H, et al. “The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue.” The Journal of

surgical research vol. 167,2 (2011): e185-91.

[20] Junnila S, et al. “Gene Expression Analysis Identifies over-Expression ofcxcl1,Sparc,spp1, andsulf1in Gastric Cancer.”

Genes, Chromosomes and Cancer, vol. 49, no. 1, 2010, pp. 28–39.

[21] Kim JM, et al. “Identification of Gastric Cancer–Related Genes Using a cDNAMicroarray Containing Novel Expressed

Sequence Tags Expressed in Gastric Cancer Cells.” Clinical Cancer research Vol. 11,2, 473–482. 15 Jan. 2005.

[22] Kyrlagkitsis I, and Karamanolis DG. “Genes and gastric cancer.” Hepato-gastroenterology vol. 51,55 (2004): 320-7.

[23] Li Q, et al. “Correlation of Cystatin E/M with Clinicopathological Features and Prognosis in Triple-Negative Breast

Cancer.” Annals of clinical and laboratory science vol. 48,1 (2018): 40-44.



Advanced Emergency Medicine- 68 -

[24] Li Y, et al. “A Methylation‐Based Mrna Signature Predicts Survival in Patients with Gastric Cancer.” Cancer Cell

International, vol. 20, no. 1, 2020.

[25] Li Z, and Xu XZ. “Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA

Replication.” Genes vol. 10,5 331. 30 Apr. 2019.

[26] Liang S et al. “Identification of Skt11-regulated genes in chondrocytes by integrated bioinformatics analysis.” Gene vol.

677 (2018): 340-348.

[27] Liu J, et al. “Identification of Critical Genes in Gastric Cancer to Predict Prognosis Using Bioinformatics Analysis

Methods.” Annals of Translational Medicine, vol. 8, no. 14, 2020, pp. 884–884.

[28] Liu X, et al. “Cancer-Associated Fibroblast Infiltration in Gastric Cancer: The Discrepancy in Subtypes Pathways and

Immunosuppression.” Journal of Translational Medicine, vol. 19, no. 1, 2021.

[29] Liu ZP, et al. “Prediction and prognostic significance of ALOX12B and PACSIN1 expression in gastric cancer by

genome-wide RNA expression and methylation analysis.” Journal of gastrointestinal oncology vol. 12,5 (2021): 2082-2092.

[30] Lu Y, et al. “Diagnostic, Therapeutic, and Prognostic Value of the Thrombospondin Family in Gastric Cancer.” Frontiers

in Molecular Biosciences, vol. 8, 2021.

[31] Ma H, et al. “Identifying of Biomarkers Associated with Gastric Cancer Based on 11 Topological Analysis Methods of

CytoHubba.” Scientific Reports, vol. 11, no. 1, 2021.

[32] Machlowska J, et al. “Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and

Treatment Strategies.” International journal of molecular sciences vol. 21,11 4012. 4 Jun. 2020.

[33] Machlowska J, et al. “High-Throughput Sequencing of Gastric Cancer Patients: Unravelling Genetic Predispositions

towards an Early-Onset Subtype.” Cancers, vol. 12, no. 7, 2020, p. 1981.

[34] Marimuthu A, et al. “Gene Expression Profiling of Gastric Cancer.” Journal of proteomics & bioinformatics vol. 4,4

(2011): 74-82.

[35] Meng Q, et al. “DNA Methylation Regulator-Mediated Modification Patterns and Tumor Microenvironment

Characterization in Gastric Cancer.” Molecular Therapy - Nucleic Acids, vol. 24, 2021, pp. 695–710.

[36] Nitta H, et al. “Cancer cells release anaphylatoxin C5a from C5 by serine protease to enhance invasiveness.” Oncology

reports vol. 32,4 (2014): 1715-9.

[37] Niu XJ, et al. “Identification of Potential Diagnostic and Prognostic Biomarkers for Gastric Cancer Based on

Bioinformatic Analysis.” Frontiers in genetics vol. 13 862105. 16 Mar. 2022.

[38] Quan RL, et al. “Prognostic Value of Upregulation of Myristoylated Alanine-Rich C-Kinase Substrate in Gastric

Cancer.” Medical science monitor: international medical journal of experimental and clinical research vol. 25 279-287. 9 Jan.

2019.

[39] Shim HJ, et al. “BRCA1 And XRCC1 Polymorphisms Associated with Survival in Advanced Gastric Cancer Treated

with Taxane and Cisplatin.” Cancer Science, vol. 101, no. 5, 2010, pp. 1247–1254.

[40] Slavin T, et al. “Genetics of gastric cancer: what do we know about the genetic risks?.” Translational gastroenterology

and hepatology vol. 4 55. 29 Jul. 2019.

[41] “Stomach (Gastric) Cancer Key Statistics.” American Cancer Society, [Internet], Available from:

https://www.cancer.org/cancer/stomach-cancer/about/key-statistics.html.

[42] Sun LP, et al. Ai zheng = Aizheng = Chinese journal of cancer vol. 23,1 (2004): 36-9.

[43] Sun MY, et al. “Prognostic Implications of Novel Gene Signatures in Gastric Cancer Microenvironment.” Medical

science monitor : international medical journal of experimental and clinical research vol. 26 e924604. 2 Aug. 2020.

[44] Szász AM, et al. “Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of

1,065 patients.” Oncotarget vol. 7,31 (2016): 49322-49333.

[45] Vetrivel P, et al. “Investigation on the Cellular Mechanism of Prunetin Evidenced through next Generation Sequencing

and Bioinformatic Approaches against Gastric Cancer.” Scientific Reports, vol. 12, no. 1, 2022.

https://www.cancer.org/cancer/stomach-cancer/about/key-statistics.html


Volume 11 | Issue 3 - 69 -

[46] Wang GH, et al. “Hypomethylated gene NRP1 is co-expressed with PDGFRB and associated with poor overall survival

in gastric cancer patients.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 111 (2019):

1334-1341.

[47] Wang GG, et al. “The prediction of survival in Gastric Cancer based on a Robust 13-Gene Signature.” Journal of

Cancer vol. 12,11 3344-3353. 12 Apr. 2021.

[48] Wang P, et al. “A novel gene expression-based prognostic scoring system to predict survival in gastric

cancer.” Oncotarget vol. 7,34 (2016): 55343-55351.

[49] Pan YL et al. “KCNE2, a down-regulated gene identified by in silico analysis, suppressed proliferation of gastric cancer

cells.” Cancer letters vol. 246,1-2 (2007): 129-38.

[50] Yuan J, et al. “Multi-Omics Analysis of MCM2 as a Promising Biomarker in Pan-Cancer.” Frontiers in cell and

developmental biology vol. 10 852135. 25 May. 2022.

[51] Zeng DQ, et al. “Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and

Immunotherapeutically Relevant Gene Signatures.” Cancer Immunology Research, vol. 7, no. 5, 2019, pp. 737–750.

[52] Zeng Z, et al. “Genome‐Wide Identification of CPG Island Methylator Phenotype Related Gene Signature as a Novel

Prognostic Biomarker of Gastric Cancer.” PeerJ, vol. 8, 2020.

[53] Zhang L, et al. “Combination of NRP1-mediated iRGD with 5-fluorouracil suppresses proliferation, migration and

invasion of gastric cancer cells.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 93 (2017):

1136-1143.

[54] Zhang YW, et al. “Multi-Omics Data Analyses Construct TME and Identify the Immune-Related Prognosis Signatures

in Human LUAD.” Molecular Therapy - Nucleic Acids, vol. 21, 2020, pp. 860–873.

[55] Zhen Yuxu et al. ”Gene expression profile towards the prediction of patient survival of gastric cancer, Biomedicine &

Pharmacotherapy, Volume 64, Issue 2, 2010, Pages 133-139.

[56] Zhou LQ, et al. “Establishment of a prognostic model of four genes in gastric cancer based on multiple data

sets.” Cancer medicine vol. 10,10 (2021): 3309-3322.

[57] Zhuo et al. “Elevated THBS2, COL1A2, and SPP1 Expression Levels as Predictors of Gastric Cancer Prognosis”. Cell

Physiol Biochem vol 40, 1316-1324. 2016.

About the author: Zihan Fang (2004.01), female, Han nationality, Beijing native, Student,High school degree, Research area:

medical.




